Preparation of Nanochitosan as an Effective Sorbent for the Removal of Copper Ions from Aqueous Solutions

Authors

Abstract:

The most important pollutants in wastewater are heavy metal ions. In this paper, the effects of various parameters such as pH, contact time, initial concentration, and temperature on the adsorption of Cu (II) by nanochitosan (NCS) was investigated in batch experiment. Nanochitosan was prepared based on ionic gelation and charac­terized by means of Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) analysis. Maximum uptake of Cu (II) was recorded at pH=6. Equilibrium data for Cu (II) were fitted well by Langmuir adsorption model with maximum adsorption capacity of 33.33 mg/g at 25°C. The obtained data showed that kinetically proceeded according to pseudo second-order model. It was concluded that NCS had great potential to remove Cu (II) ions from the aqueous solutions at various concentrations of metal ions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Removal of copper ions from aqueous solutions using polypyrrole and its nanocomposites

In this article, preparation of polypyrrole and its nanocomposites as adsorbents werediscussed and the capability of separation of copper ions from aqueous solution were studied.Polypyrrole was prepared by chemical oxidative polymerization method of pyrrole usingFeCl3 as an oxidant. The removal of Cu (II) was investigated using PPy, PPy/TiO2 andPPy/TiO2/DHSNa nanocomposites. The products were i...

full text

The kinetics of the removal of copper ions from aqueous solutions using magnetic nanoparticles supported on activated carbon

Removal of Cu(II) from aqueous solution supplies is possible through the process of adsorption. One of these processes involves the preparation of magnetic nanoparticles on activated carbon (AC). Adsorbed coppre ions on the surface of Fe3O4-AC are separated from aqueous solutions using external magnetic fields. In the present study, magnetic nanoparticles were synthesized ...

full text

Removal of copper (II) from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC) in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as pH, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum pH required for maximum ads...

full text

Application of Nano-lignocellulose for Removal of Nickel Ions from Aqueous Solutions

Nickel is one of the toxin heavy metals in surface waters. Developing new approaches aimed at removing heavy metals from aqueous solutions that are simultaneously economical and environmentally friendly is of great importance. The purpose of this study will be using Nano-lignocellulose adsorbent as a natural material to remove nickel heavy metal. In this study, several important environmental p...

full text

The Perlite-calcium Alginate-activated Carbon Composite as an Efficient Adsorbent for the Removal of Dyes from Aqueous Solutions

To remove dyes from wastewater, the perlite-calcium alginate–activated carbon (PCA) composite was prepared by a simple method. This composite was characterized by FTIR, XRD, SEM, and BET techniques. A high capacity of PCA was observed for the adsorption of some dyes such as methylene blue (MB) and methyl orange (MO) from aqueous solutions (1111 and 909 mg g-1). The best results were achieved at...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 26  issue 8

pages  829- 836

publication date 2013-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023